New Insights into the Fundamental Principle of Semiconductor Photocatalysis Baoshun Liu, a* Hao Wu, a Ivan P. Parkin, b ^aState Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan city, Hubei Province 430070, People's Republic of China ^bDepartment of Chemistry, Materials Chemistry Centre, University College London, 20 Gordon Street, London WC1H 0AJ, U.K. Figure S1. On-line photoconductances of TiO_2 coating in the course of acetone photocatalytic oxidations at different temperatures Figure S2. Change of acetone concentration in the course of acetone photocatalytic oxidations at different temperatures Figure S3. On-line photoconductances of TiO₂ coating in the course of acetone photocatalytic oxidations under illumination of 365 nm monochromic light with different light intensities Figure S4. Change of acetone concentration in the course of acetone photocatalytic oxidations under illumination of 365 nm monochromic light with different light intensities Figure S5. CO₂ evolutions during the dark catalytic oxidations of acetone Figure S6. CO₂ evolutions during the catalytic oxidations of acetone under simultaneous illumination of 365 nm monochromic light illumination Figure. S7. CO₂ evolutions during the dark catalytic oxidations of formaldehyde Figure S8. CO₂ evolutions during the catalytic oxidations of formaldehyde under simultaneous 365 nm monochromic light illumination